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Decision making

• The field of statistical inference consists of those 
methods used to make decisions or draw conclusions 
about a population.

–Parameter estimation

–Hypothesis testing
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Estimation of μ and σ

• Is X an unbiased estimator of population average μ?

• Is s2 the unbiased estimation of σ2 (population variance)?
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Point estimation
• A point estimate of some population parameter θ is a single 

numerical value θ of a statistic Θ.

^ ^
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Hypothesis testing

• Statistical hypothesis

–A statement about the parameters of one or more 
populations

• Hypothesis testing

–To accept or reject a statement (hypothesis) about 
some parameters
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Example

• Assume monkey temperature is a random variable that 
can be described by a probability distribution.

• Suppose that our interest focuses on the mean body 
temperature.

• Specifically, we are interested in deciding whether or not 
the mean body temperature is 35°C.

–H0: μ = 35°C (null hypothesis)
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Statistical hypothesis

• Null hypothesis

–H0: μ = 35°C 

• Two-sided alternative hypothesis

–H1: μ ≠ 35°C

• One-sided Alternative Hypotheses

–H1: μ > 35°C or μ < 35°C 

• Hypotheses are always statements about the population, 
not the sample.
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Test of a hypothesis

• Hypothesis-testing procedures rely on using the 
information in a random sample from the population of 
interest.

• If this information is consistent with the hypothesis, then 
we will conclude that the hypothesis is true; else, it is 
false.
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Decision criteria

Fail to reject H0
(μ = 35°C )

35°C 36.5°C 33.5°C 

Reject H0
(μ ≠ 35°C )

Reject H0
(μ ≠ 35°C )

Body 
Temperature

Critical value

Critical region
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A critical region has to be defined to reject null hypothesis.



Significance test

Fail to reject H0
(μ = 35°C )

35°C 36.5°C 33.5°C 

Reject H0
(μ ≠ 35°C )

Reject H0
(μ ≠ 35°C )

Body 
Temperature
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Confusion matrix

Actually Positive Actually Negative

Predictive Positive True Positive (TP) False Positive (FP)

Predictive Negative False Negative (FN) True Negative (TN)
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Actual condition
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Sensitivity (recall, true positive rate) =
TP

TP+FN

Specificity (selectivity, true negative rate) =
TN

FP+TN

Precision (positive predictive rate) =
TP

TP+FP

Harmonic mean =
F1 score



Types of error

• Type-I error (α)

–Significance level, α-error

–α = P(rejecting H0 when H0 is true)

42

Fail to reject H0
(μ = 35°C )

35°C 36.5°C 33.5°C 

Reject H0
(μ ≠ 35°C )

Reject H0
(μ ≠ 35°C )

Body 
Temperature



Type-I error

• P-value: The smallest level of significance that would lead 
to rejection of H0

Two-sided One-sided
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Type-I error

• Example: The body temperature is measured on 16 
healthy monkeys and the critical region is set between 
33.5~36.5°C. What is the probability of type-I error when 
the true mean temperature is 35°C and σ = 3°C?
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Types of error

• Type-II error (β)

–β = P(fail to reject H0 when H0 is false)

–The power of a statistic test: 1- β

35°C 36.5°C 33.5°C Body 
Temperature

Fail to reject H0
(μ = 35°C )
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Types of error

• β increases rapidly as sample mean approaches the 
hypothesized value

4635°C 36.5°C 33.5°C Body 
Temperature

Fail to reject H0
(μ = 35°C )



How to reduce error?
• To reduce type-I error?

–Push the critical values further toward the tails

– Increase the sample size

• To reduce type-II error?

–Push the critical region away from the sample mean

– Increase the sample size

• Type I and type II errors are related. A decrease in α 
always results in an increase in β (given constant n)
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General procedure for hypothesis testing

1. Identify the parameter of interest

2. State the null hypothesis H0

3. Specify an appropriate alternative hypothesis H1

4. Choose a significance level α

5. State the corresponding rejection region 

6. Decide whether or not H0 should be rejected
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• Example of propellant burning rate:
– Sample size = 25, mean = 51.3 cm/sec

– Population σ = 2 cm/sec, specification = 50 cm/sec

– Type-I error probability (α) = 0.05

• Solution procedure (reject or not?)
– Parameter of interest = the mean burning rate μ

– H0 :

– H1 :

– Test statistics

– Reject criterion

– Conclusion?
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• In the previous example, we reject H0 at 0.05 significance 
level.

• Still no information about how far off the sample mean is.

• What is the smallest α (significance level) to result in a 
rejection of H0?

• P-value

–The smallest level of significance that would lead to 
rejection of H0
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Confidence interval

• If X is the sample mean of a random sample of size n from 
a population with known variance σ2, a 100×(1- α) % 
confidence interval on μ is given by

where zα/2 is the upper 100 × α/2 percentage point of the 
standard normal distribution.
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What if variance is unknown?

• When the population mean μ and variance σ2 is known 
 z-test

• When the population variance σ2 is unknown, and n > 30
 z-test

• When the population mean μ and variance σ2 is unknown, 
and n < 30,

 t-test (assuming a normal distribution)

– ,  degree of freedom: k = n -1
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PDF of t distributions

(z-distribution)
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T-test (one sample)
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• H0 (μ = μ0) is rejected only when
t0 > tα/2,n-1 or   t0 < -tα/2,n-1 (two-sided hypothesis)
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T-distribution
v: degrees of freedom



• Example of golf club performance:
– coefficient of restitution = outgoing speed / incoming speed

– 15 balls are measured, mean = 0.8375, s = 0.02456

– Does the mean exceed 0.82?

• Solution procedure
– Check normality of sample 

– One-sided test: H0 and H1 ?

– α = 0.05 

– Test statistics

– Reject criterion

– Conclusion?
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P-value of a t-test
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Confidence interval

• If X and S is the sample mean and standard deviation of a 
random sample of size n from a population with unknown
variance σ2, a 100×(1- α) % confidence interval on μ is 
given by

where tα/2,n-1 is the upper 100 × α/2 percentage point of 
the t distribution with n-1 DoF.
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Hypothesis testing on the variance of  a 
normal population

• Let X1, X2…, Xn be a random sample from normal 
distribution with unknown mean μ and unknown variance 
σ2.  The quantity

has a chi-square distribution with n-1 degrees of freedom.
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Chi-square distribution

• PDF:

Hypothesis testing on the variance 
P(X2 > χ2

α,k) 60
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• Example: automatic filling machine fills bottles with 
detergent
– 20 samples are measured, s2 = 0.0153

– Variance > 0.01 will cause unacceptable proportion of 
under- and over-filled bottles  From t-test

– Do the data suggest a problem in filling (α = 0.05)?

• Solution procedure
– H0 and H1 ?

– α = 0.05 

– Test statistics

– Reject criterion

– Conclusion?
62



Chi-square 
distribution

table

v: degrees of freedom
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Decision making for 
two samples



Two-sample tests

• Purpose: to extend the hypothesis testing for the 
population parameter to the case of two independent 
populations
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Inference on the means of two populations

• When the 2 populations’ variances σ1
2 and σ2

2 are known 
 z-test

• When the 2 populations’ variances σ1
2 and σ2

2 are unknown, 
and n > 30 z-test

• When the 2 populations’ variances σ1
2 and σ2

2 are unknown, 
and n < 30 t-test (assuming a normal distribution)
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Case 1: Hypothesis testing on the difference of 
means, variance known

• Assumptions:

–The two populations, X1 and X2, are independent.

–Both are normal. 

• Treat X1 - X2 as a parameter,

Standard normal 
distribution 
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Two-sample z-test
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• Example:

–A product developer is working to shorten a primer 
paint’s drying time

– formulation 1 = standard chemistry; formulation 2 = 
new chemistry

–σ of drying time = 8 min, independent of formulation

–10 specimens of each formulation are randomly tested

–α = 0.05

• Solution procedure

–One-sided test: H0 and H1 ?

–Test statistics

–Reject criterion

–Significance level? 69



Case 2: Hypothesis testing on the difference of 
means, variance unknown and equal
• Assumptions:

–The two populations, X1 and X2, are independent.

–Both are normal. 

–σ1 = σ2 = σ. The pooled estimator of σ2 is defined by

• Treat X1 - X2 as a parameter,
t distribution 

(DoF = n1 + n2 - 2)
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Case 3: Hypothesis testing on the difference of 
means, variance unknown and not equal

• Assumptions:

–The two populations, X1 and X2, are independent.

–Both are normal. 

–σ1 ≠ σ2

• No exact t-statistic available. Use the following 
approximation:

t distribution 

(DoF: )
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Case 4: Hypothesis testing on the difference of 
means, pair t-test
• Assumptions:

–The observations, X1 and X2, on the two populations 
are collected in pair.

SD: standard deviation of difference
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What if we have more than two samples?

• We have learned about testing differences between 2 
levels of a factor of interest

• However, there are usually more than 2 levels for a 
factor
– Ex: effect of different medications

• How to distinguish?
– Analysis of variance (ANOVA)
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生醫影像處理：生醫統計學

如果生命只剩下最後一小時，我願意花在統計課上，

因為統計課總是讓我覺得度日如年…

74


	Decision making
	Decision making
	Estimation of μ and σ
	Point estimation
	Hypothesis testing
	Example
	Statistical hypothesis
	Test of a hypothesis
	Decision criteria
	Significance test
	Confusion matrix
	Types of error
	Type-I error
	Type-I error
	Types of error
	Types of error
	How to reduce error?
	General procedure for hypothesis testing
	投影片編號 49
	投影片編號 50
	Confidence interval
	What if variance is unknown?
	PDF of t distributions
	T-test (one sample)
	T-distribution
	投影片編號 56
	P-value of a t-test
	Confidence interval
	Hypothesis testing on the variance of  a normal population
	Chi-square distribution
	投影片編號 61
	投影片編號 62
	投影片編號 63
	Decision making for two samples
	Two-sample tests
	Inference on the means of two populations
	Case 1: Hypothesis testing on the difference of means, variance known
	Two-sample z-test
	投影片編號 69
	Case 2: Hypothesis testing on the difference of means, variance unknown and equal
	Case 3: Hypothesis testing on the difference of means, variance unknown and not equal
	Case 4: Hypothesis testing on the difference of means, pair t-test
	What if we have more than two samples?
	 生醫影像處理：生醫統計學

