

Biomedical sensors 生醫感測器

莊子肇 副教授 中山電機系

Properties of biomedical signals

- Weak in signal intensity
- Easily interfered by ambient noise
- High variability
- Safety and reliability is important

Range of common bioelectric signals

Flowchart of biosignal measurement

Biomedical sensor

- Transform one signal/energy to another one
 - Also termed as transducer
 - Ex: stress \rightarrow voltage, temperature \rightarrow resistance
- To measure a specific physiological parameter
 - In vitro: concentration of electrolytes, enzyme,...
 - In vivo: blood pressure, oxygen saturation level,...
- Accuracy, reliability, and portability

Biomedical sensors

- Biopotential
- Displacement, velocity, force, pressure
- Temperature
- Blood O₂/CO₂, PH value

Biopotential sensor

- Electrodes: to sense the ion distribution
- Capable of conducting currents across the interface between the body and the measuring circuit
 - Ionic current \rightarrow electronic current?
 - High impedance of skin (~MΩ)

How to measure?

- Ions can not flow into the electric wire directly, and vice versa.
- The ionic flow has to be transformed to an electronic current at the interface.
 - Reduction-oxidation reaction (Redox)

Electrode-electrolyte interface

Ag/AgCl Electrode

Rich Cl[–] ions in human body

Improve conductivity of electrodes

 Conductive paste is usually applied on the surface of electrodes as electrolyte.

- Half-cell potential
 - An DC offset at the interface

Let check it out from beginning...

Oxidation of Ag begins...

Oxidation of more Ag ...

Electrical wiring

Helmholtz double layer structure

Ag Ag **e**⁻ Ag Ag **AgCl** Human body Ag Ag **e**⁻ Ag Electrode Electrolyte

Electrical wiring

Half-cell potential

- The potential introduced by the double layer structure between the electrode and the electrolyte
- Its value is influenced by the type of metal,
 - ion concentration, temperature...
 - DC offset, which can be removed by high-pass filter

Half-cell potentials at 25°C

naduatio	• • • • • • • • • • • • • • • • • • • •		
reductio	reduction reaction	$E^{o}(V)$	
$Al^{3+} + 3$	$Al^{3+} + 3e^- \rightarrow Al$	- 1.662	
$Zn^{2+}+2$	$Zn^{2+} + 2e^- \rightarrow Zn$	-0.762	
$Cr^{3+} + 3$	$Cr^{3+} + 3e^- \rightarrow Cr$	-0.744	
$Fe^{2+} + 2$	$Fe^{2+} + 2e^- \rightarrow Fe$	-0.447	
$Cd^{2+} + 2$	$Cd^{2+} + 2e^- \rightarrow Cd$	-0.403	
$Ni^{2+} + 2$	$Ni^{2+} + 2e^- \rightarrow Ni$	-0.257	
$Pb^{2+} + 2$	$Ph^{2+} + 2e^- \rightarrow Ph$	- 0.126	
$2H^{+}+2$	$2H^+ + 2e^- \rightarrow H_2$	0.000	By definition
$AgCl + \epsilon$	$AgCl + e^{-} \rightarrow Ag + Cl^{-}$	+ 0 222	Commonly adopted as
Hg_2Cl_2 -	$H_{\alpha} C_{l}^{\dagger} + 2e^{-} \rightarrow 2H_{\alpha} + 2C_{l}^{\dagger}$	+0.268	ECG electrodes due to
$Cu^{2+} + 2$	$\frac{11}{2}C_{12}^{2+} + 2c_{1}^{2-} + 2c_{1}$	+ 0.208	its high stability and low
$Cu^+ + e^-$	$Cu^+ + 2e^- \rightarrow Cu^-$	+ 0.342	its high stability and low
$A\sigma^+ + \rho^-$	$Cu + e \rightarrow Cu$	+0.521	half-cell potential
15 10	$Ag^+ + e^- \rightarrow Ag$	+0.780	

Measurement of half-cell potential

Ag/AgCl Electrode

Equivalent circuit of an electrode

$$Z = R_s + \frac{R_d}{1 + j2\pi f C_d R_d}$$

Frequency response of impedance

Experimentally determined magnitude of impedance

V/I waveforms for stimulations

Motion artifacts of electrodes

- Distribution of ions across the interface would reach an equilibrium.
 - Double layer structure
- Once the electrode moves, the re-distribution of ions results in changes of potentials immediately.
 - Interference for measurement of biopotentials

Body-surface electrodes

(a) Metal-plate electrode for limbs

(b) Metal-disk electrode applied with surgical tape

量心電圖兼拔罐?

Electrodes for ECG

Photo credit: St Vincent's Hospital Heart Health, Sydney, NSW, Australia

Electrode cap for EEG

Wet and dry electrodes

- Wet electrodes
 - Good conductivity and good quality of signals
 - Disposable, low risk of infection
 - Commonly used for clinical routine and research
 - Long-term or frequent use may cause discomfort and/or allergic reaction.

Wet and dry electrodes

- Dry electrodes
 - Use stainless steel or platinum as contact to skin
 - Without using adhesives and conductive gels
 - Convenient and sustainable
 - Higher impedance, more sensitive to motion artifact than wet electrodes (sweat helps!)

Dry electrodes

Portable/mobile ECG

Fitness devices

Textile electrode for wearable devices

Conductive fibers are knitted into textile and integrated with embed sensors.

Microelectrodes

- To measure membrane potential (50-100 mV in amplitude)
 - Relatively higher than common biopotentials
- Glass/metal tips for penetration of the membrane
- Very high impedance
 - Small contact area

Percutaneous electrodes

- The electrode or its lead wire penetrates through skin for invasive measurement of biopotentials.
 - No need for conductive paste/gel
 - Suitable for EMG of deep or a specific region of muscle
 - Discomfort, higher risk of infection

Various needle and wire electrodes

(a) Insulated needle electrode
(b) Coaxial needle electrode
(c) Bipolar coaxial electrode
(d) Fine-wire electrode
connected to hypodermic needle

Needle electrode for EMG

Microelectrodes

 Microelectrodes, consisting of metal, Si and SiO₂, can be fabricated using modern microelectronic technology.

Microelectrodes for neural recording

Figure 3. (a) 8 shafts, each with 8 electrodes, compared to a human hair. (b) Close up of 2 electrodes.

1D and 2D electrode arrays

38

EEG detection and muscle stimulation

Ref: Ajiboye *et al.* "Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with 39 tetraplegia: A proof-of-concept demonstration", Lancet, 389:10081, pp. 1821-1830, 2017

Biomedical sensors

- Biopotential
- Displacement, velocity, force, pressure
- Temperature
- Blood O₂/CO₂, PH value

Possible biomedical applications?

- Displacement
- Velocity and/or acceleration
- Force
- Pressure

Sensor for detection of movement

- Transformation of the deformation (or its associated physical phenomenon) into electrical signals
 - Transfer function
 - Voltage or current as the output of sensor
 - The electrical output is fed into a measurement circuit for amplification, filtering, and conversion.

Types of movement sensor

- Resistive
- Inductive
- Capacitive
- Piezoelectric

Resistive: potentiometers

 Use a voltage divider to measure displacement or rotation as a continuous function

Resistive: strain gauges

- Deformation of conductive materials may induce change of its resistance.
 - Dimensional effect (Ex: diameter of metal leads/wires)
 - Piezoresistive effect (Ex: semiconductor materials)

Resistive: strain gauges

Dimensional effect of resistance (R)

$$\mathbf{R} = \rho \frac{L}{A}$$

- Stretching of the wire would make it longer and narrower, leading to higher resistance, and vice versa.
- Small-scale deformation of metal
 - Suitable for small displacement

Resistive: strain gauges

Thin wire in zig-zag patternMounted on a flexible foil

Photo credit: Wikipedia (Strain gauge)

Application of strain gauge

Arterial blood pressure transducer

Wheatstone bridge configuration

Semiconductor strain gauge

- Pressure sensors made on Si substrate
 - MEMS manufacture
 - Higher sensitivity, but also more sensitive to temperature and more fragile than metal SG
- Possible applications: mini- pressure sensors attached on skin, mounted on catheter, or embedded in wearable devices

Strain gauge on a smart catheter

Expansion of the mesh structure deploys the probe to monitor the internal shape of the blood vessel.

Diagram of a MEM-based smart catheter

Ref: Kim Y *et al.* "Development of platinum strain gauge based on Ni-Co metal substrate for smart catheter application", Micro and Nano Systems Letters, volume 8:15, 2020

Inductive sensor

- An inductive sensor is a device that uses the principle of electromagnetic induction to detect objects or its movement.
 - Inductance: a coil of wire over a ferrous core

Inductive sensor

- Physical contact is not necessary
- Capable of operate in wet or dirty conditions
- Commonly used in daily life
 - Metal detectors, vehicle detection loops

installed at intersections or parking spaces...

Linear variable differential transformer

LVDT is used to detect linear displacement robustly

Capacitive sensor

 A capacitive sensor is used to measure movement by detecting the associated change of capacitance coupling.

• Capacitance:
$$C = \varepsilon \frac{A}{d} = \varepsilon_0 \varepsilon_r \frac{A}{d}$$

 ε : dielectric constant ε_0 : vacuum dielectric constant ε_r : relative dielectric constant A: the overlapping area of two plates d: the distance of two plates

Capacitive sensor: basic concepts

Variable area mode

$$C = \varepsilon_0 \varepsilon_r \frac{(A - wx)}{d}$$

Variable dielectric mode

$$C = \varepsilon_0 w \frac{\varepsilon_1 (l - x) + \varepsilon_2 x}{d}$$

Differential mode

$$C = \varepsilon_0 \varepsilon_r \frac{A}{2d - x}$$

Capacitive sensor: applications

- Project capacitance touch technology
 - Touch screen/panel
- Respiration monitoring system
 - Robust and low-cost
- Implantable pressure sensor
 - Fabricated by semiconductor technology

Project-capacitive

touch panel

Capacitive sensor for respiratory monitoring

CDC: capacitance-to-digital converter DAQ: data acquisition

Diagram of the capacitive sensor: The capacitance between the fixed triangular electrode and the sliding rectangular electrode is related to the extension of the respiratory belt.

Ref: Grlica J, Martinovic T, and Dzapo H. "Capacitive sensor for respiration monitoring", Proc. IEEE Sensors Appl. Symp. (SAS), pp. 1-6, Apr. 2015

Capacitive implantable pressure sensor

Ref: Roh JH, Shin KS, Song TH, Kim J, Lee DS. "Development of an Implantable Capacitive Pressure Sensor for Biomedical Applications", Micromachines (Basel),14(5):975, 2023.

Piezoelectric sensor

- Piezoelectric effect: the ability of certain materials to generate an electrical charge in response to mechanical stress
 - Piezo-: "press" in Greek
 - Stress \rightarrow Electric potential
 - Reversible: Electric potential \rightarrow Stress

Piezoelectric effect

Stress \rightarrow Electric potential

Electric potential \rightarrow Stress

Piezoelectric sensor

- Suitable for detection of rapid and small movements
 - PZT (lead zirconate titanate, 鉻鈦酸鉛) is deformed by about 0.1% of the original dimension.

Applications: ultrasound transducers,
 microphone for instruments (guitar pickups)...

Biomedical sensors

- Biopotential
- Displacement, velocity, force, pressure
- Temperature
- Blood O₂/CO₂, PH value

Temperature sensor

- Resistance thermometer 熱電阻溫度計
 - Resistance temperature detector (RTD)
- Thermistor 熱敏電阻
- Thermocouples 熱電偶
- Radiation thermometry
 - Infrared thermometer

Resistance Temperature Detector

- RTD wire is usually pure metal, such as platinum (Pt), nickel (Ni), and copper (Cu).
- Resistance of RTD increases at higher

temperature.

- Positive temperature coefficient of resistance
- $R_T = R_0(1 + \alpha_1 T + \alpha_2 T^2 + \dots + \alpha_n T^n) \cong R_0(1 + \alpha_1 T)$
- Accurate, stable, and large temperature range

Thermistor

- Resistance of this semiconductor type of resistor decreases at higher temperatures
 - Negative temperature coefficient of resistance
 R_T = R₀e<sup>β(¹/_T-¹/<sub>T₀)</sup>
 </sup></sub>
- In comparison, thermistors usually achieve better precision within a limited temperature range
 - Typically -90°C to 130°C

Thermistor

(a) Relationship of resistance ratio and temperature of various thermistors(b) Non-linearity of resistance at high currents

Thermocouple

- Seebeck effect: an electromotive force generates across two points of a conductive material when there's a temperature difference between them
 Thermoelectric effect
- Thermocouple: two dissimilar conductors (metals) forming an electric junction with a temperaturedependent voltage

Thermocouple

 The output voltage (V_{OUT}) depends on temperature difference (T₁ - T_{REF}) and the type of metals

Thermocouple

- Pros: self-powered, inexpensive, wide variety of probes, large range of temperature measurement
 0°C to >1000°C
- Cons: reference temperature required, relative low sensitivity (V_{OUT}: μV to mV)
 - Thermopile: thermocouples connected in series to increase sensitivity

Radiation thermometry

- Thermal radiation: as the temperature of a black body decreases, the emitted radiation decreases in intensity and its maximum moves to longer λ
 - Black-body radiation
 - The maximum of thermal radiation at body temperature corresponds to infrared
 - Infrared thermometer: non-invasive and non-contact

Radiation spectrum at 300 K

 Wavelength of maximal spectral radiance

 $\lambda_m = \frac{2898}{T}$ (µm)

• Total radiant power $W_T = \varepsilon \sigma T^4$

Measuring body temperature with...

- Mercury thermometer
- Thermistor with a digital readout
- Infrared thermometer
 - Ear/forehead thermometer, thermal camera

Pros and cons?

Biomedical sensors

- Biopotential
- Displacement, velocity, force, pressure
- Temperature
- Blood O₂/CO₂, pH value

Blood gas: O₂ and CO₂

- Only 2% of O₂ is dissolved in the plasma. 98% of O₂ is combined with hemoglobin (as HbO₂) in the red blood cells.
 - pO₂: the efficiency of alveolar ventilation
 - SO₂(oxygen saturation): amount of O₂ in blood
- Most CO₂ is transformed into HCO₃⁻ in blood
 - pCO₂ is directly correlated with pH value at 10-90 mmHg

Clark-type pO₂ sensor

Reduction-oxidation reaction Cathode: reduction $O_2 + 2H_2O + 4e^- \leftrightarrow 4OH^-$ Anode: oxidation $Ag \leftrightarrow Ag^+ + e^ Ag^+ + Cl^- \leftrightarrow AgCl\downarrow$

Q: As pO₂ goes higher, the current will?

Transcutaneous pO₂ sensor

- Attached on the skin, instead of being immersed in blood or tissue fluid.
 - Measure oxygen diffusing from blood through the skin.
 - Non-invasive, but less accurate.

Detection of pCO₂ and pH value

- log(pCO₂) is linearly dependent on pH value at 10-90 mmHg
 - Normal range of pCO₂: 33-48 mmHg
 - $\blacksquare H_2O + CO_2 \leftrightarrow H_2CO_3 \leftrightarrow H^+ + HCO_3^-$
- pH = log₁₀[H⁺]
 - [H⁺][OH⁻] = 10⁻¹⁴ at 25°C

pH electrode

- Equivalent to a battery model
 - +: active electrode (or measuring electrode)
 - -: reference electrode
- When both electrodes are immersed in the solution under test, a potential directly related to [H⁺] is developed across electrodes.

Oxygen saturation level (SO₂)

- Two wavelengths of light are applied on blood to measure their absorbance respectively.
 - Ex: red light (660 nm) and infrared (805 nm)
- The absorption rates of HbO₂ and Hb are independent functions of wavelength.
 - Use the absorption rates at two wavelengths to estimate the ratio of HbO₂

Absorptivities of HbO₂ and Hb

Summary

- Biopotential sensor
- Displacement, velocity, force, pressure
- Temperature
- Blood O₂/CO₂, PH value
- And a lot more...

生醫工程導論:生醫感測器

Reference chapters:

<u>Chapter 9</u>: Biomedical sensors, "Introduction to Biomedical Engineering", John Enderle, Susan Blanchard, and Joseph Bronzio. <u>Chapter 2</u>: Basic sensor and principles and Chapter 5: Biopotential electrodes, "Medical Instrumentation: Application and Design", John G. Webster.

CREDITS: This presentation template was created by <u>Slidesgo</u>, and includes icons by <u>Flaticon</u>, and infographics & images by <u>Freepik</u>