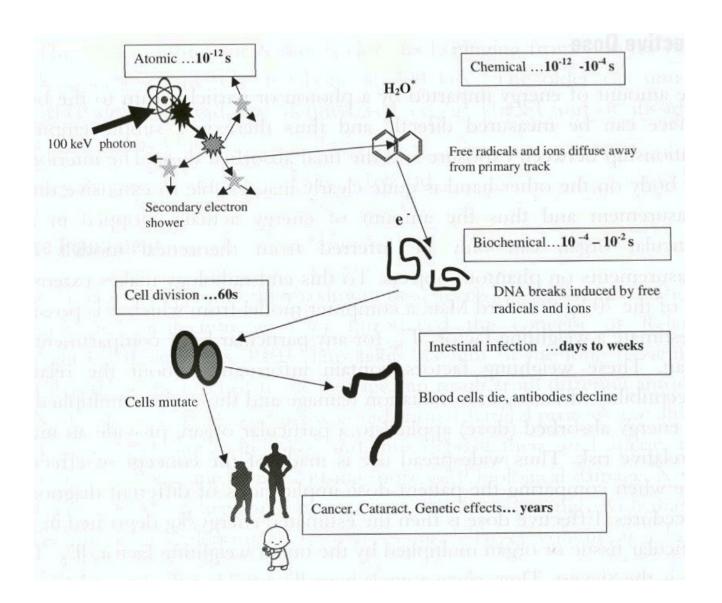

醫學影像安全 Safety

莊子肇 副教授 中山電機系

生物效應與安全性

- •醫學影像是為了幫助醫師診斷,但是...
- 做醫學影像會不會有害?
- 沒事還是別亂照?
- 對我:有辦法的話還是早點改行?

有這麼危險嗎?


來!我們來看看你的身體是不是正常...看一下就好!

Radiation protection

Bioeffects of radiation

- · 高劑量:噁心、嘔吐、全身不適、 甚至死亡。
 - -數秒到數天內發生(deterministic effect)
- 低劑量:破壞細胞新陳代謝、遺傳物質改變、縮短生命。
 - -接受輻射數十年後,都還可能影響 (stochastic risk)

Scale vs. Time

如何量化輻射劑量?

- 輻射曝露: Exposure
- 產生的輻射對單位重量的空氣所游離的電荷
 - -代表輻射源的強度
 - -單位: Roentgen (R), Coulomb/kg
 - $-1 R = 2.58 \times 10^{-4} C/kg$ of air
- 與距離平方成反比

吸收劑量 (Absorbed dose)

- 單位重量的物質所吸收的輻射劑量
 - -相當於輻射曝露量×游離單位電荷所需 的能量
- 單位: gray (Gy, SI unit), rad (cgs unit)
 - -1 Gy = 1 J/kg = 100 rad
- 輻射曝露與吸收劑量成正比
 - $-Dose (rad) = f \times Exposure (R)$
 - f-factor (no unit): $f_{tissue} \sim 1$, $f_{air} = 0.87$

等價劑量 (Equivalent dose)

- 不同種類的輻射可能帶來不同程度的 生物效應
- · 評估生物輻射效應:等價輻射(H)
 - -H (Sv, sievert) = Dose (Gy) \times w_R
 - $-\mathbf{w}_{R}$: radiation weighting factor

 $w_R = 1$ for X-rays, γ -rays, electrons;

 $w_R = 2$ for protons; $w_R = 20$ for α -particles

有效劑量 (Effective dose)

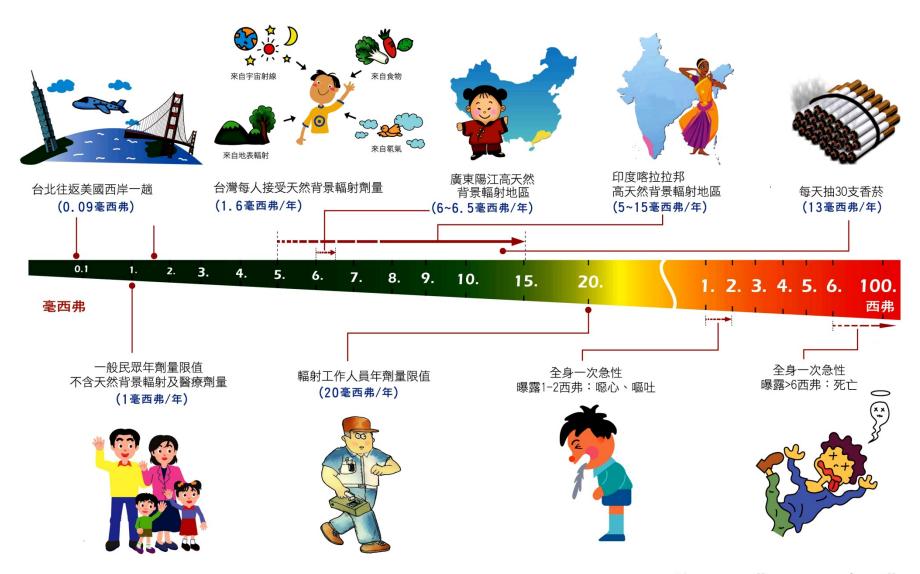
- 將局部的吸收劑量等效為全身所接受的 劑量
 - $-D_{\text{effective}} = \Sigma H_{\text{T}} \times W_{\text{T}}$
 - $-w_T$: tissue/organ weighting factor (0 < w_T < 1)
- 整體評估輻射所帶來的累積性風險

各種組織的加權常數

人體組織/器官	組織加權因子
紅骨髓、肺、胃、結腸、乳腺	0.12
性腺	0.08
肝臟、食道、甲狀腺、膀胱	0.04
腦、唾腺、皮膚、骨頭表面	0.01

^{*}Provided by the 2007 Recommendations of the International Commission on Radiological Protection (ICRP)

還沒被輻射,頭就暈了~


- 放射治療
- 輻射劑量

- \rightarrow gray (Gy)
- \rightarrow sivert (Sv)
- 核醫藥物製成 → becqueral (Bq)

生物輻射劑量

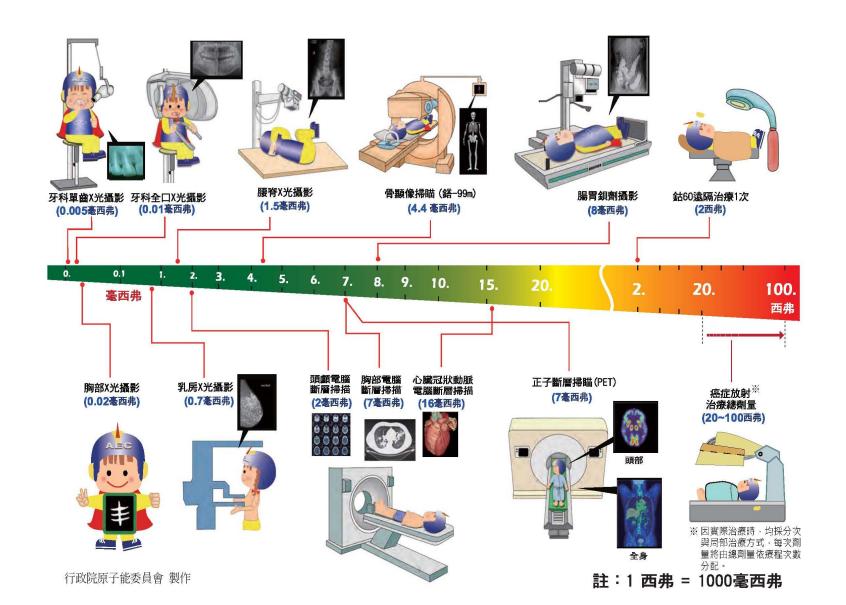
- 1 R 的輻射源對人體組織約產生 0.01 Sv 或 10 mSv 的劑量
- 生活環境中就算不做醫學影像也有輻射劑量累積(背景輻射)
- 每年每人平均劑量: 1.5~3 mSv

一般游離輻射劑量

註:1 西弗 = 1000毫西弗

法定輻射工作人員劑量限度

目前原子能委員會規定:


受照射之身體器官	mSv/年
全身之有效劑量 (註:連續五年週期之有效劑量<100 mSv)	50
眼球水晶體之等價劑量	150
皮膚或四肢之等價劑量	500

Typical effective dose (mSv)

Investigation	Effective Dose	Wr	No of Chest X-rays	Period of Natural Exposure
Radiography				
Dental	0.01	0.01	0.5	1.5 days
Chest	0.02	0.12	1	3 days
Skull	0.1	0.05	5	2 weeks
Dorsal Spine	1.0	0.01	50	6 months
Lumbar Spine	2.4	0.01	120	14 months
Barium Studies				
Oesophagus	2.0	0.05	100	12 months
Large Bowel	9.0	0.12	450	4.5 years
CT				
Chest	8.0	0.12	400	4 years
Brain	2.0	0.01	100	12 months
Thoracic Spine	6.0	0.01	300	3 years
Lumbar Spine	3.5	0.01	175	1.8 years
Nuclear Medicine		`		
99mTc Studies				
Bone imaging	3.6	0.12	180	1.8 years
Cerebral perfusion	4.5		225	2.3 years
Myocardial perfusion	5.0		250	2.5 years
Gastric emptying	0.3	0.12	15	2 months
Thyroid imaging	1.0	0.05	50	6 months

Nuclear medicine: Science and Safety, A. Perkins (1995)

醫療輻射劑量圖

輻射防護

- 雖然說成像所需劑量不高,但能免 則免
- 非用不可:ALARA 原則
 - -As Low As Reasonably Achievable

US bioeffects and safety

超音波

- 成像原理:利用高頻聲波進入組織所產生的回波成像
- 完全無輻射性

• 所以沒有危險性?

波動 → 能量

- Acoustic power:超音波探頭所發 射的能量
 - -Peak and average
 - -Temporal and spatial distribution

• 要如何規範?

超音波生物效應:Heating

- 超音波穿透組織時能量被吸收轉換成 熱能
 - -超音波衰減的主因
- 超過41°C就有致命性危險,一般建議 不可增溫超過1.5°C
- 加熱時間越長, 危險性越高

超音波生物效應:Heating

- 與I_{SPTA} (spatial peak-temporal average intensity) 高度相關
 - −FDA regulation : 720 mW/cm²
 - -但不是唯一的指標
- Thermal index (TI):超音波能量與每升 溫1°C所需要的能量的比例
 - -不同組織皆有不同

超音波生物效應: Cavitation

- · Cavitation:短時間內正負壓力快速轉換可能在組織內產生氣泡並消滅
 - -造成細胞破壞
 - -正負壓變化越大,破壞效應越強

超音波生物效應: Cavitation

- 與I_{SPPA} (spatial peak-pulse average intensity) 高度相關
 - −FDA regulation : 190 mW/cm²
- Mechanical index (MI < 1.9)

$$MI = \frac{PNP}{\sqrt{f_c}}$$

- *PNP*: Peak negative pressure
- $-f_c$: central frequency

結論

- 以目前來說,醫用超音波的危險性極低。
- 但還是需要注意安全!
 - -尤其是胎兒攝影

MRI bioeffects and safety

先來回憶一下: MRI的儀器設備

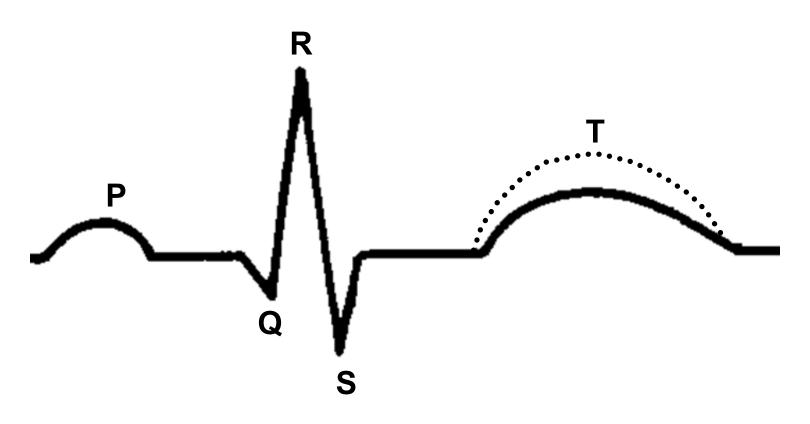
- · 使人體變成磁鐵:強磁場 (M)
- · 激發與接收信號: 射頻線圈 (R)
- 把信號編碼:梯度線圈(I)

先來回憶一下: MRI的儀器設備

- 使人體變成磁鐵:強磁場
- 激發與接收信號: 射頻線圈
- 把信號編碼:梯度線圈

• 這些設備對人體有無傷害?

MRI的生物效應

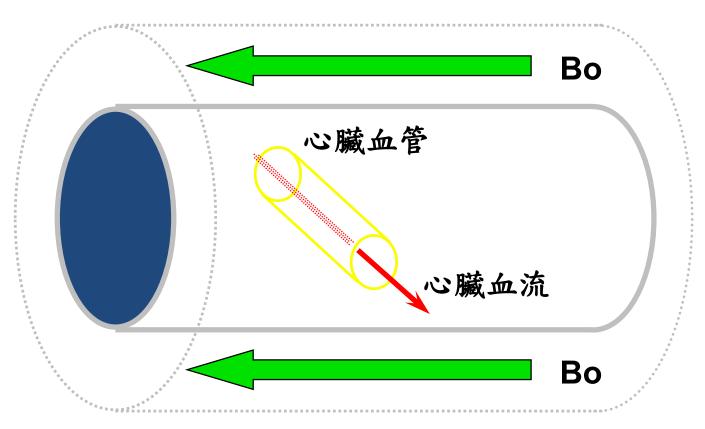

- 極低,或沒有
- 即使有,大多可以立即復原

- 寧可信其有?
- 馬上來看看...

M of MRI:強力(超導)磁鐵

- · 病人照完 MRI 就具有磁性?
- 細胞不正常分裂?
- 水晶磁場有助於改善周邊環境?
- · 心電圖 T wave 增強?

心電圖Twave增強



已知的 MRI 強磁場效應之一

心電圖Twave增強效應

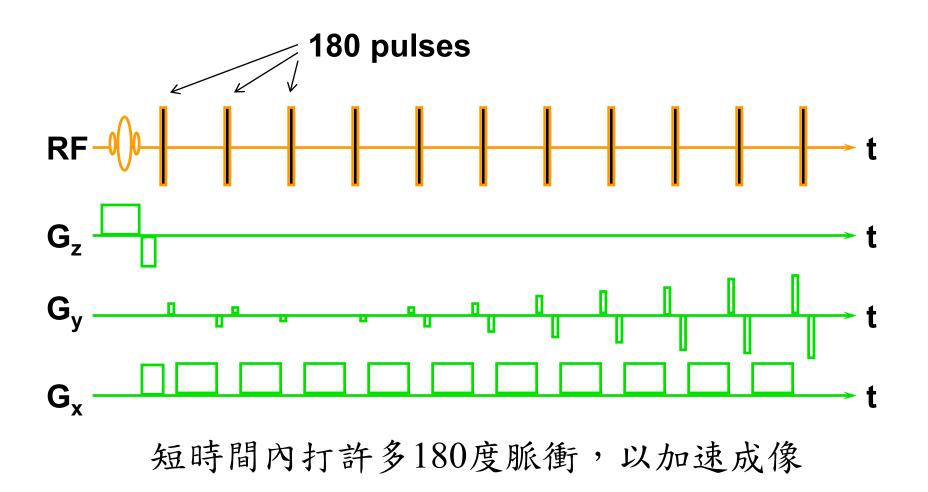
- Magnetohydrodynamic 效應
- 血液是導體
- 導體在磁場中運動,產生感應電場
- 反應到體表,被心電圖 (ECG, electrocardiogram) 測得

Magnetohydrodynamic 效應

導體(血液)在磁場中運動 產生感應電場

ECGT wave 增強的危險?

- 對病人應無害
- Gating 的錯誤 (當成 R wave 了)
- · T wave 增強也可能代表心肌梗塞
- 在MRI掃瞄前後檢查 ECG 對照



R of MRI: RF coils

- · 射頻激發 (RF) 類似微波爐?
- 射頻類似收音機無線電波

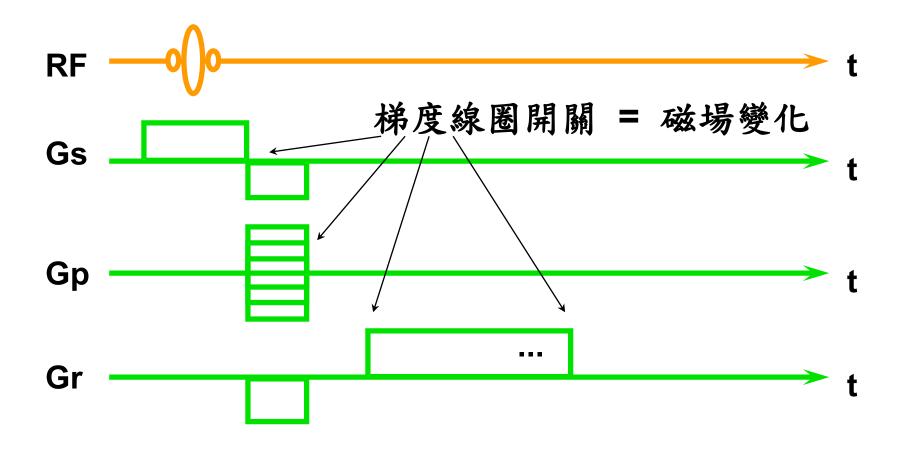
• 生物效應: RF 過多, 局部體溫會 略為提高

快速成像技術:fast-spin echo

射頻激發 (RF) 的生物效應

- 擔心?不必! FDA SAR limits:
 - 頭部平均 3.2 W/Kg 以下
 - 全身平均 2.0 W/Kg 以下
 - 局部最高 10.0 W/Kg 以下

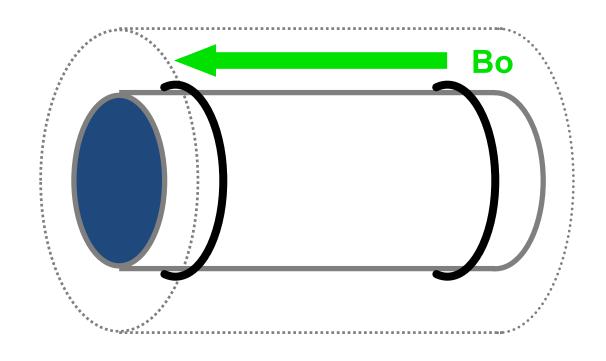
射頻激發 (RF) 的熱效應


• 人體內部自有體溫調節系統

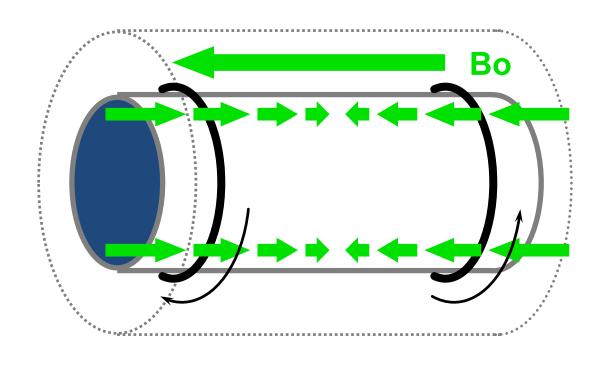
• 溫度上升,立刻由血流帶走熱量

I of MRI: gradient coils

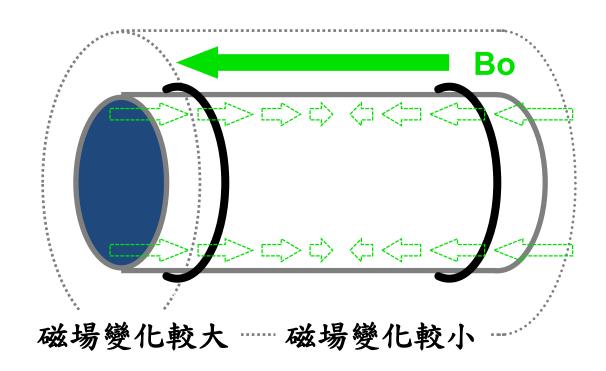
- 快速磁場變化,人體又是導體...
 - -磁生電?
- 病人會觸電?
- •神經電生理受到擾亂?


Gradient echo

磁磷眩光


- Magnetophosphene
- 快速磁場變化,磁生電
- 視神經受到刺激,好像看到閃光
- 視神經並未受到破壞
- · 距離 MRI 中心愈近,效應愈小

例如:Z梯度線圈關閉時


Maxwell Pair

Z梯度線圈開啟

各處磁場快速產生變化

Z梯度線圈再度關閉

距離 MRI 中心愈近,效應愈小

體表神經刺激

- Peripheral nerve stimulation (PNS)
 - -視神經:產生眩光
 - 體表神經: 癢、麻、痛
- · 在磁場梯度變化快速的脈衝序列容易 出現(如: echo planar imaging)
- 一旦停止掃瞄,反應立刻消失

MRI的噪音

- 起因:梯度線圈的磁場變化
- 成像愈快,通常聲音愈大

• 給予病人耳塞

摘要: MRI的生物效應

- · 強磁場:T wave 增強
- RF coils:局部體溫上升
- Gradient coils: 眩光、體表神經刺激
- 線圈產生劇烈震動:噪音

正常操作下,對病人、醫師、放射師 均無害

MRI的安全防護

不是說很安全嗎?為什麼還要防護?一安全的是正常操作...

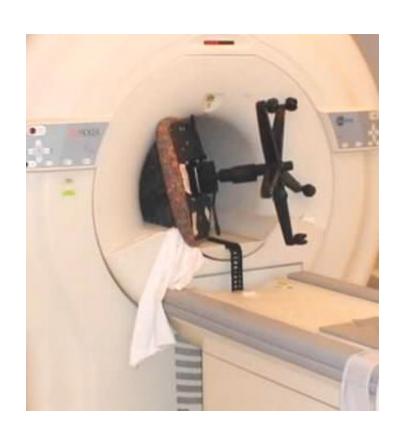
• 不正常的操作可能 極度危險!

WARNING!!

磁力的比較

- 地球磁場: 0.5 Gauss
 - → 指南針偏轉
- ·小學生的吸鐵石:50 Gauss
 - > 吸引迴紋針
- MRI主磁場:15,000 Gauss
 - →吸引電視機?

以極大吸力快速吸引家電用品



功率放大器

除濕機

還有...

椅子

打蠟機

還有...

吸塵器

静脈注射設備

幾年前才發生...

New Delhi, India, 2014

強磁場與鐵磁性物質的危險性

• 愈重的物品,愈可能成為致命武器!

- 其他還有:心律調節器 (pacemaker)
- 強磁場影響下功能可能喪失
- 全世界有一名死亡病例 (1990)

事前防範的重要性

- 儀器附近物品不可隨意放置
- 詢問病人有否裝設人工器官等
- •除去手錶、髮夾等,更換病患衣物
- 閒雜人等切勿進入!

萬一發生緊急事故

- · 身體不適:立刻讓病人離開 MRI
 - -例:幽閉恐懼症 (Claustrophobia)
- · 病人生命遭受威脅:緊急 quench
- · Quench: 將超導磁性關除
 - 耗費大量人力財力、磁鐵可能損壞

Quench

- 液態氦、液態氮大量揮發
- 若無排除,室內氧氣將急劇減少
- 磁性消失,須重行充灌
- 時間~二週,金錢~數百萬元
- 如無生命威脅或深仇大恨,切勿輕易 使用!

ALARA

醫學影像系統:醫學影像安全