MRI Hardware: Magnet, Gradient coils, and RF coils

莊子肇 副教授 中山大學電機系

Basic hardware

- Magnetic: Main magnet
- Resonance: RF coils
- Imaging: Gradient coils

Main magnet

- Strong enough
 - Higher B₀ brings higher signal intensity.
- Big enough
 - Suitable for human scan
- Permanent magnet? Electromagnet?

Permanent magnet

Field strength: ~0.1-1.0 Tesla

Permanent magnet: close bore

Hitachi MRP-5000 (0.2 Tesla)

Permanent magnet: open bore

Siemens Magnetom C (0.35 Tesla)

Pros and cons

- Not driven by electricity
- Distribution of magnetic field is limited in bore.
- Very heavy! (can reaching 30 tons...)
 - Difficulty in transportation and relocation

Reducing weight for permanent magnets

Open space MRI

Electromagnets

Maximum ~ 0.3 Tesla

Electromagnets

Bruker Electromagnet MRI

Pros and cons (vs permanent magnet)

- Less weight and less expensive
- Require high electricity (\$\$)
- Strong fringe fields
- Large current generates heat, increasing temperature and causing instability.

Wiring on ferromagnetic materials?

Reducing weight, but not able to increase B₀

Superconducting magnet

- An electromagnet made by superconducting materials (e.g., Nb-Ti alloy)
- Superconductivity: no electrical resistance
 - No power dissipation!
 - No electric supply required!
 - No heat accumulation!

Superconductivity

- Usually exist at very low temperature
 - Superconducting temperature for NbTi: 9.4 K
- Superconducting coils have to be bathed in liquid helium (boiling point: -269°C)
- Vacuum layer and liquid nitrogen (BP: -196°C)
 can be also used for heat insulation.

Superconducting magnet: cryostat

Shimming

- Shimming is performed to improve the homogeneity of the main magnetic field (B_0) .
- **Passive** shimming: small pieces of ferromagnetic metal fixed within the bore
- Active shimming: adjusting currents in specialized shim coils

Shim coils

Current of each shim coil element is adjusted independently

Installation of an MRI system

Superconducting magnet MRI: 1T to >11 T

GE Signa HDx 1.5 T
Courtesy: General Electric Company

Siemens Magnetom Lumina 3T Courtesy: Siemens Healthcare

MRI with superconducting magnet

- Strong magnetic field (FDA approval: 7T)
- Minimal power required after installation
- Good stability
- Less weight than permanent magnet (<10 tons)
- > 90% of MRI scanners use superconducting magnet.

Weakness of superconducting magnet

- Strong fringe fields
- Close-bore design could induce intense fear of enclosed space.
 - Claustrophobia
- Very expensive
 - Not only the scanner, but also liquid helium

Magnetic shielding

- Magnetic shielding is developed to reduce the fringe field.
- Passive shielding: steel panels are covered on the cryostat to concentrate magnetic flux
- Active shielding: additional coils are designed to cancel the external field

Passive shielding

1-cm thick steel panels could reduce around half of fringe fields

The effect of magnetic shielding

Fringe field of a 1.5T scanner

0.5-mT (5 Gauss) fringe line

Wide-bore technology

Siemens Magnetom Free. Max (0.55 Tesla)

Open-bore system (open MRI)

Siemens Magnetom C (0.35 Tesla)

ASG MROpen EVO (0.5 Tesla)

Reduced use of liquid helium

Conventional cooling >1,000 l helium

DryCool technology 0.71 helium

Courtesy: Siemens Healthcare

Summary: main magnet

- Superconducting magnet can produce higher magnetic field strength
 - Better SNR
 - Dominant in both clinical and research usage even though it is expensive

Gradient coils

- To generate a spatial-dependent magnetic field for spatial encoding
 - Gradient: changing as a function of position
- Electromagnetic coil
- Three sets of independent gradient coils: x-, y-, and z-gradients

How to generate a spatial-dependent field?

Z gradient

The magnitude of gradient field varies in z direction.

Linear z gradient field

The magnitude of gradient field varies in z direction.

Z gradient coil

Direction of gradients

- The direction of magnetic field produced by a gradient coil is always along z direction
 - Parallel to B₀
- The magnitude of gradient field (z-component) varies linearly along certain direction.
 - For example, y gradient produces a field with its magnitude varying along y direction.

Y gradient

The magnitude of gradient field varies in y direction.

Y gradient coil

Saddle (Golay) coil configuration

X gradient

The magnitude of gradient field varies in x direction.

X gradient coil

Saddle (Golay) coil configuration

X or y gradient coil

Winding etched into copper sheets

Modern fingerprint pattern

Combination of three gradient coils

Strength of gradient

- Stronger gradient benefits higher resolution.
 - You will realize it soon with your homework...
- How to increase the gradient strength?
 - Increase the density of winding
 - Create rapidly changing fields

Weak gradient

Strong gradient

Wiring of gradient coils

- Gradient coils are basically loops/helix of wire.
 - Self inductance
- Lenz's law: the direction of induced current opposes the changing of applied current
- Gradient fields won't change as fast as you want.

Rise time and slew rate

Gradient echo

Trapezoid waveform of gradients

Rise time and slew rate

- For modern MRI scanners (2020's)
 - Gradient strength: max at 40-60 mT/m
 - Slew rate: max at 150-200 T/m/s (or mT/m/ms)
- Rise time: around 0.1-0.3 ms
 - Not a big deal except for rapid imaging
- But the switching of gradients also causes acoustic noise and eddy currents.

Switching of gradients: acoustic noise

- Lorentz force is applied on the gradient coil driven by currents in strong magnetic field (B_0).
- Switching on and off the gradient causes vibration of the gradient coil
- Acoustic noise could reach 100 dB and higher!

Acoustic noise

- Fast sequences cause louder noise
 - EPI, fast GRE, FSE (TSE)
- Protection for patients
 - Ear plug or ear mug

Switching of gradients: eddy currents

- The rapidly changing magnetic field may induce currents on any conductor nearby
 - Faraday's law of conduction
 - Conductors: e.g. Gradient coils, RF coils, ...
 - Eddy current
- Unwanted gradients, time-varying (false) signals

Eddy currents induced by changing fields

Changing magnetic flux may cause inductive currents

Shielding of gradient coils

Magnetic flux of the gradient coil z gradient

The distribution of magnetic flux is constrained by shielding

RF coils

- Excitation and detection of MR signals
 - Transmission and reception of radio-frequency EM waves
 - Larmor frequency

Hardware for signal excitation

- To generate a excitation field (B₁) at Larmor frequency
- Requirement
 - High efficiency/gain at Larmor frequency
 - B₁ must be perpendicular to B₀

Hardware for signal detection

- To receive the induced currents at Larmor frequency
- Requirement
 - High efficiency/gain at Larmor frequency
 - Aiming at the oscillating magnetic flux, which is perpendicular to B_0

Analog to RF antenna

Radio transmission and reception

RF excitation of magnetization

Oscillator circuit

- An electrical circuit that produces a periodic signal
 - For example, LC circuit
- High gain (or low attenuation) at specific frequency
- Covering on the region of interest

Basic concept of the oscillator circuit

Conservation of energy

Oscillator circuit: LC circuit

Surface coils

Saddle coil and Helmholtz coil

Saddle coil

Helmholtz coil

Helix coil can't be used as a RF coil

Birdcage coil

Head coil

Comparison of different coils

Purposes of the RF coils

- Excitation coil: producing homogeneous B₁ field
- Receive coil: close to patient's body for better signal intensity

Usually, separate coils are utilized for RF excitation and reception.

Classification: volume coil vs surface coil

- Volume coil
 - Coverage of a large volume
 - Good homogeneity
- Surface coil
 - Flexible size and shape
 - Closer to the body for high sensitivity

How to choose?

- Depending on the region to be imaged
- Large area: use the minimal volume coil for excitation and detection
- Small area: use the volume coil for excitation and a surface coil for detection

Phased-array coil

- Combination of multiple small surface coils into large arrays
 - Each element collects MR signals independently
 - Coupling between nearest elements minimized
 - Similar to the phased array from antenna theory
- High SNR and large FOV!

Phased-array coil

Spine phased-array coil

Spine imaging using a phased-array coil

Combination of all elements achieves large coverage.

Advanced phased-array: 32-channel head coil

Each channel equipped with its own amplifier and filter (\$\$\$)

Terracotta Warriors?

Flexible coils: adaptive to body shape

Contour S Coil

Contour M Coil¹

Siemens Contour coil
Courtesy: Siemens Healthcare

Contour L Coil

So many coils in an MRI scanner...

System chart

MRI Hardware: Magnet, Gradient coils, and RF coils