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Accelerated MRI & Compressed 
Sensing 

• Time requisite in MRI 
– One k-space line at a time 
– Several minutes for one volumetric image 

 
• Acceleration 

– Physical limit   : Contrast must be preserved 
– Hardware limit : Gradient Performances 
– Software limit  : Nyquist Criteria 
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Physical Limit 
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Physical Limit 
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Hardware Limit: IDEAL  

5 

Z Gradient 

RF 
excitation 

t 

t 

Y Gradient t 

X Gradient t 
... 



Hardware Limit 
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Hardware Limit 

• Higher Slew Rate: 
– Shorten the ramp 
– Require better eddy current 

shielding 
– Peripheral Nervous Stimulation 

 
• $ is also a kind of hardware 
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Software Limit 
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Software Limit 

• Fourier Encoding and reconstruction 
• Imaging Speed v.s. Resolution 
• Nyquist Criteria 

– Linear perspective:  
The number of conditions should be 
compatible to the number of variables 
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Software Limit 
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Accelerated MRI 

• Hardware + Software  
– Parallel Imaging : PILS, SMASH, GRAPPA, 

SENSE, Space-RIP ….. 
 

• Temporal Strategies 
– UNFOLD, kt-BLAST, TSENSE,…..  

 
• Compressed Sensing 
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Parallel Imaging 
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The coil images are correlated 



Parallel Imaging - SENSE 



Parallel Imaging 
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Parallel Imaging 
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General Solution of Parallel Imaging 
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Accelerated MRI 

• Hardware + Software  
– Parallel Imaging : PILS, SMASH, GRAPPA, 

SENSE, Space-RIP ….. 
 

• Temporal Strategies 
– UNFOLD, kt-BLAST, TSENSE,…..  

 
• Compressed Sensing 
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The y-f power spectrum of a heart 

Cardiac CINE    y-f power spectrum 
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Acceleration Factor R = 2 

• kt space sampling  R = 2 Image 
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Impact on the y-f power spectrum 

• R = 2 Image    y-f power spectrum 
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Temporal Strategy R = 2 

• kt space sampling                R = 2 Image 

t 

k 



Undersampling 的變化 (以兩倍為例) 

• R = 2 Image     y-f power spectrum f 
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UNFOLD 

• Original    UNFOLD 



Temporal Undersampling Strategy 

• Aliasing artifact can be removed by filtering 
 

• UNFOLD (by Bruno Madore) 
 

• Extended research topics 
–  kt-BLAST, TSENSE 
– Compressed Sensing 



Undersampling 的變化 (只取低頻) 

• kt space sampling                Low Res Image 

t 
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The spectrum of the low-res images 

• Low Res Image    yf space pattern 



kt-BLAST、kt-SENSE 

由低解析度影像，取得訊號權重資訊 
經由訊號權重，解開aliased signal 

只要能解開 aliasing，影像重建就不是問題 



Temporal Strategy & Reconstruction 
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Reconstruction Algorithm 

H: Implicit Regularization (FILTER) 
L: Explicit Regularization (FILTER) 



Accelerated MRI 

• Hardware + Software  
– Parallel Imaging : PILS, SMASH, GRAPPA, 

SENSE, Space-RIP ….. 
 

• Temporal Strategies 
– UNFOLD, kt-BLAST, TSENSE,…..  

 
• Compressed Sensing 
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Compressed Sensing 
• Much empty space in the power spectrum 

– A lot of empty space (0) : Sparse representation 
– No. of SIGNIFICANT variables are much smaller than 

expected.  
 

• Are there other sparse presentations? 
– For other images 

 
• Is it possible to sample these significant components 

DIRECTLY?  
– Compressive Sampling 
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Compressed Sensing 

• Sparse Representation 
 
• Compressive Sampling 

 
• Signal Recovery 
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Compressed Sensing 

• Sparse Representation 
 
• Compressive Sampling 

 
• Signal Recovery 
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Other Sparse Representation 
Wavelet Transform 

• Data can sparsely represented 

3D T1w 

Wavelet 
Representation 
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Other Sparse Representation 

Discrete Cosine Transform 
 

Total Variance (Gradient) 
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Sparse transformations 
• Fourier transformation 

 
• Wavelet transformation 

 
• Discrete Cosine transformation 

 
• Principal component decomposition 

 
• Edge detection (Total Variance) 
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Data Compression & Sparsity 

• Sparse Data can be 
compressed 
 

• Sparse Transformation 
– Fourier Transform 
– Wavelet (JPEG2000) 
– Discrete Cosine 

Transform (JPEG) 
– …etc 

• Transformed Sparse Data 

• Sparse Data 

(13,64) (18,32) 



Other Sparse Representation 

• Sparse data can be compressed 
25% 12.5% 

6% 3% 
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Where Compressed Sensing is from 

• Something is wrong with  
“Sample then Compress” 
 
 
 
 

• What if a directly sampling from compressed 
data is feasible? 

~20% 
data 
stored 
256x25 
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Compressed Sensing 

• Sparse Representation 
 
• Compressive Sampling 

 
• Signal Recovery 
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Sampling equation (Ill-posed) 

41 



Sampling equation (Ill-posed) 
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Sampling equation (Ill-posed) 
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Compressive 
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Compressive Sampling 

• Sparse Representation 
 

• Incoherent sampling & representation space 
 

• Restricted Isometry Property 
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Sparsity 
• Sparse : only a few non-zero elements. 
• Lp-norm 0≦ p<2 can be used to represent the sparsity of a dataset. 

L0 and L1 are commonly used for discussion. 
 
 
 
– Ex: a=[5, 0, 0, -1, 0], ||a||0=2, ||a||1=6 , precisely sparse  
      b=[5, -4, 2, 3, 0], ||b||0=4, ||b||1=14 , not sparse 
      c=[-5, 0.001,-0.005, 1, 0],  
    ||c||0=4, ||c||1=6.006 , nearly sparse (with noise and …) 

• In Compressed Sensing  
– L1 norm is suitable for the nearly sparse data.   
– L1 is equivalent to L0 in reconstruction. [Donoho, Tanner] 
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Data Compression & Sparsity 

• Sparse Data can be 
compressed 
 

• Sparse Transformation 
– Fourier Transform 
– Wavelet (JPEG2000) 
– Discrete Cosine 

Transform (JPEG) 
– …etc 

• Transformed Sparse Data 

• Sparse Data 

(13,64) (18,32) 



Compressive Sampling 

• Sparse Representation 
 

• Incoherent sampling & representation space 
 

• Restricted Isometry Property 
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Incoherence 
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Incoherence 
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Incoherence 

• k-space   V.S     Wavelet space 
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Compressive Sampling 

• Sparse Representation 
 

• Incoherent sampling & representation space 
 

• Restricted Isometry Property 
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Restricted Isometry Property 

• The encoding matrix of Compressive Sampling must 
satisfy Uniform Uncertainty Principle. 
 

• Uniform Uncertainty Principle (UUP) 
– aka Restricted Isometry Property  

 



Restricted Isometry Property 

• K-sparse data are mostly distinguishable in Φ  
 
 

• And the undersampled data in representation space 
may look similar to the original data 
 
 



Restricted Isometry Property 
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Restricted Isometry Property 
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Restricted Isometry Property 
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Restricted Isometry Property 
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Toward Compressed Sensing 
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Toward Compressed Sensing 
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Compressed Sensing 

• Regularly Undersampling 
– Regularly distributed aliasing artifact 
– Difficult to distinguish signal and artifacts 

 
• Irregularly Undersampling 

– Irregular distributed artifacts (Noise Like) 
– Noise suppression algorithm may help 
– How about finding a sparsest solution 
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Compressed Sensing 

• Sparse Representation 
 
• Compressive Sampling 

 
• Signal Recovery 
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Finding a Solution 
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Finding a CS Solution 
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An example of CS solution 
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An example of CS solution 
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An example of CS solution 
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An example of CS solution 

• Parametric form of the general solutions of x 
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The answer shall be the sparsest 
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Searching in solution space 

• Exactly recover the precisely sparse data 
 

• The only method compatible to find the 
solution subject to min L0-norm  
 

• Time consuming 
 

• Not suitable for slightly larger scale system 



Finding a Sparsest Solution 
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Finding a Sparsest Solution 
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Algorithms to explore CS solution 
• Sparsest searching (impractical) 

 
• non-linear Conjugate Gradient  

– CG: Newton’s Method in matrix form 
– line search 

 
• Basis pursuit (A greedy method) 

– Orthogonal Matching Pursuit 
 

• LASSO: least absolute shrinkage and selection operator 
 

• ......... (FOCUSS) 
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non-linear Conjugate Gradient 
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SPARSE MRI 

Michael Lustig et al. 
Magn Reson Med, 58: 1182–1195 (2007) 
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SPARSE MRI 

Michael Lustig et al. 
Magn Reson Med,  
58: 1182–1195 (2007) 
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SPARSE MRI 

• The sparser, the better 
– Contrast Enhanced MRA has better reconstruction 

than conventional T1w and T2w images.  
 

• Higher dimension has more degrees of 
freedom for sparse representation 
– Better reconstruction in 3D MRI than in 2D 
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Algorithms to explore CS solution 
• Sparsest searching (impractical) 

 
• non-linear Conjugate Gradient  

– CG: Newton’s Method in matrix form 
– line search 

 
• Basis pursuit (A greedy method) 

– Orthogonal Matching Pursuit 
 

• LASSO: least absolute shrinkage and selection operator 
 

• ......... (FOCUSS) 
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͞   Original Data 
。Irregular Samples 

Data Recovery: Greedy Method 
• Orthogonal Matching Pursuit 
• Keep picking up the maximal signal in the sparse 

representation of each iteration 
• Remove the component from the undersampled data 
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Data Recovery: Greedy Method 

• Original fully-sampled 
acquisition 
 
 

• Least square 
reconstruction 
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Data Recovery: Greedy Method 

• Randomly  
undersampled 
acquisition 
 
 

• Least square 
reconstruction 
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Data Recovery: Greedy Method 
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CS on Cardiac CINE imaging 

• Original FULLY sampled cardiac CINE 
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The Spectrum of Cardiac Motion 

 Cardiac CINE Image     y-f spectrum 

f 

y 
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Reconstruction 

OMP 

2nd Round: 
OMP + Weighting  86 



w/ and w/o penalty (3x) 

Reference 
Fully Sampled W/ Penalty from 

1st recon 
Without Penalty 
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Fully Sampled V.S CS Sampled  
Spectrum of Cardiac Motion 

Fully 
Sampled 
Reference 
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Reconstruction 

One Round: 
OMP + Weighting  

 FT 
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w/ and w/o penalty (3x) 
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Reference 
Fully Sampled W/ Penalty from 

1st recon 
Without Penalty W/ Self-Reference 

Penalty (3.4x) 



w/ and w/o penalty (3x) 

 20 Secs   6 Secs  6 Secs 5.5 Secs 
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FMRI 
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Other CS applications: 
MRSI 

• Mapping Metabolites in Human Brain 

• T1W   Regional Spectra 93 



 

Non-
accelerated 
Reference 

3x 
acceleration 
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Other CS applications: 
HARDI & Fiber tracts 

 

• Typical Water Diffusion Barrier 
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Other CS applications: 
HARDI 

• HARDI encodes ADC on several direction to 
resolve complex microstructure 

Diffusion Encoding Directions Diffusion Profile 
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Resolving the Orientation: CFARI 
… 
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Result : Color FA map 

Accelerated Multi-shot DWI 

100 Directions 64Directions 
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Orientation Map 

Accelerated Multi-shot DWI 

100 Directions 64Directions 
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Something About CS 

• A very powerful tool 
– Not only useful in MRI but other Multimedia 

 
• Sparsity is the key toward faster MR scan 

– Fast super resolution imaging 
 

• Reconstruction may take much time. 
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