#### 高等磁共振影像技術

#### 動態加速影像與壓縮感知 Accelerated MRI & Compressed Sensing

Tzu-Cheng Chao, Ph.D.

Dept. of Computer Science and Information Engineering Institute of Medical Informatics National Cheng-Kung University

### Accelerated MRI & Compressed Sensing

- Time requisite in MRI
  - One k-space line at a time
  - Several minutes for one volumetric image

- Acceleration
  - Physical limit : Contrast must be preserved
  - Hardware limit : Gradient Performances
  - Software limit : Nyquist Criteria

## Physical Limit



## Physical Limit

- Signal feature ~ Repetition Time
- Getting Faster = Loss in Contrast
- Magnetization Preparation?!
  - EPI : Distortion
  - GRE/FSE: Signal Inhomogeneity

#### Hardware Limit: IDEAL



#### Hardware Limit



#### Hardware Limit

- Higher Slew Rate:
  - Shorten the ramp
  - Require better eddy current shielding
  - Peripheral Nervous Stimulation

• \$ is also a kind of hardware

#### Software Limit



#### Software Limit

- Fourier Encoding and reconstruction
- Imaging Speed v.s. Resolution
- Nyquist Criteria
  - Linear perspective:
     The number of conditions should be compatible to the number of variables

#### Software Limit

• Fourier Encoding

• 
$$k(k_x) = \sum_{x=0}^{N_x - 1} \rho(x) e^{-2\pi i \frac{k_x x}{N_x}}$$

• 
$$\begin{bmatrix} k(0) \\ \vdots \\ k(N_{x}-1) \end{bmatrix} = \begin{bmatrix} e^{-2\pi i \frac{(0*0)}{N_{x}}} & \dots & e^{-2\pi i \frac{(0*N_{x}-1)}{N_{x}}} \\ \vdots & \ddots & \vdots \\ e^{-2\pi i \frac{(N_{x}-1*0)}{N_{x}}} & \dots & e^{-2\pi i \frac{(N_{x}-1*N_{x}-1)}{N_{x}}} \end{bmatrix} \begin{bmatrix} \rho(0) \\ \vdots \\ \rho(N_{x}-1) \end{bmatrix}$$

#### Accelerated MRI

• Hardware + Software

 Parallel Imaging : PILS, SMASH, GRAPPA, SENSE, Space-RIP .....

Temporal Strategies
 – UNFOLD, kt-BLAST, TSENSE,.....

• Compressed Sensing

## Parallel Imaging



## Parallel Imaging - SENSE



## Parallel Imaging



### Parallel Imaging

• The signal equation

$$k_{\vec{k}} = \mathbf{P}_{\vec{k}} \mathbf{F}_{\vec{r} \to \vec{k}} \mathbf{S}_{\vec{r}} \boldsymbol{\rho}_{\vec{r}} = \Phi \boldsymbol{\rho}_{\vec{r}}$$

- r: image space, k: k-space
- k : k-space signal P : sampling mask
  - F : Fourier Operator S : Sensitivity Encoding
- $\Phi$  : a general encoding matrix

General Solution of Parallel Imaging  $\rho'_{\vec{r}} = \left(P_{\vec{k}} F_{\vec{r} \to \vec{k}} S_{\vec{r}}\right)^{-1} k_{\vec{k}} = \left(\Phi^{\dagger} \Phi\right)^{-1} \Phi^{\dagger} k_{\vec{k}}$ Or  $\rho'_{\vec{r}} = \min_{\rho'} \left|k_{\vec{r}} - P_{\vec{r}} F_{\vec{r} \to \vec{r}} S_{\vec{r}} \rho'_{\vec{r}}\right|^{2}$ 

$$\rho'_{\vec{r}} = min_{\rho'_{\vec{r}}} |k_{\vec{k}} - P_{\vec{k}} F_{\vec{r} \to \vec{k}} S_{\vec{r}} \rho'_{\vec{r}}|_2$$
$$= min_{\rho'} |k - \Phi \rho'|_2^2$$

- Parallel imaging still satisfies Nyquist criteria.
- Sensitivity encoding serves the additional conditions

#### Accelerated MRI

- Hardware + Software
  - Parallel Imaging : PILS, SMASH, GRAPPA, SENSE, Space-RIP .....

Temporal Strategies
 – UNFOLD, kt-BLAST, TSENSE,.....

• Compressed Sensing

#### The y-f power spectrum of a heart



Cardiac CINE

y-f power spectrum

#### Acceleration Factor R = 2



• kt space sampling

R = 2 Image

#### Impact on the y-f power spectrum





•  $\mathbf{R} = 2$  Image

y-f power spectrum

## Temporal Strategy R = 2



• kt space sampling

R = 2 Image

#### Undersampling 的變化(以兩倍為例)





R = 2 Image ightarrow

## UNFOLD



• Original

UNFOLD

#### Temporal Undersampling Strategy

• Aliasing artifact can be removed by filtering

• UNFOLD (by Bruno Madore)

Extended research topics

 kt-BLAST, TSENSE
 Compressed Sensing

# Undersampling 的變化 (只取低頻)





• kt space sampling

Low Res Image

#### The spectrum of the low-res images





• Low Res Image

#### yf space pattern

#### kt-BLAST 、 kt-SENSE



由低解析度影像,取得訊號權重資訊 經由訊號權重,解開aliased signal 只要能解開 aliasing,影像重建就不是問題

#### Temporal Strategy & Reconstruction

• Aliasing artifact can be relocated along *f* domain by special designed sampling pattern.

- The reconstruction requires prior knowledge of the signal behavior
  - UNFOLD: No signal appears in Nyquist region
  - kt-BLAST: a low resolution prior knowledge is required for the reconstruction.

#### **Reconstruction Algorithm**

Encoding Process

 $k = PFS\rho = \Phi\rho$ 

• Image Reconstruction Process

 $\rho' = \min_{\rho'} |k - H\Phi\rho'|_2^2 - \lambda^2 |L\rho|_2^2$   $\rho' = \left(\Phi^{\dagger}H^{\dagger}H\Phi + \lambda^2 L^{\dagger}L\right)^{-1}\Phi^{\dagger}k$ H: Implicit Regularization (FILTER) L: Explicit Regularization (FILTER)

#### Accelerated MRI

- Hardware + Software
  - Parallel Imaging : PILS, SMASH, GRAPPA, SENSE, Space-RIP .....

Temporal Strategies
 – UNFOLD, kt-BLAST, TSENSE,.....

• Compressed Sensing

## **Compressed Sensing**

- Much empty space in the power spectrum
  - A lot of empty space (0) : *Sparse representation*
  - No. of SIGNIFICANT variables are much smaller than expected.
- Are there other sparse presentations?
   For other images



- Is it possible to sample these significant components DIRECTLY?
  - Compressive Sampling

#### **Compressed Sensing**

• Sparse Representation

• Compressive Sampling

• Signal Recovery

#### **Compressed Sensing**

• Sparse Representation

• Compressive Sampling

• Signal Recovery

#### Other Sparse Representation Wavelet Transform

#### • Data can sparsely represented



Wavelet Representation

3D T1w

34

## Other Sparse Representation



#### **Discrete Cosine Transform**

#### **Total Variance (Gradient)**





#### Sparse transformations

- Fourier transformation
- Wavelet transformation
- Discrete Cosine transformation
- Principal component decomposition
- Edge detection (Total Variance)
# Data Compression & Sparsity

- Sparse Data can be compressed
- Sparse Transformation
  - Fourier Transform
  - Wavelet (JPEG2000)
  - Discrete Cosine
     Transform (JPEG)
  - ...etc

• Sparse Data





# Other Sparse Representation

#### • Sparse data can be compressed













## Where Compressed Sensing is from

#### • Something is wrong with "Sample then Compress"



• What if a directly sampling from compressed data is feasible?

# **Compressed Sensing**

• Sparse Representation

• Compressive Sampling

• Signal Recovery

# Sampling equation (Ill-posed)

• The signal equation

#### $k = P F \Psi \alpha = \Phi \Psi \alpha$

 $\Psi$ : Sparse Transformation s.t.  $\Psi^{-1}\rho = \alpha$  is a sparse signal

- F : A complete linear transformation
- P : Sampling function on F space

# Sampling equation (Ill-posed)



# k = $\Phi \Psi \alpha$ $\rho: y - f signal$ $\Psi: I, \Phi: masked 2D FT$



# Sampling equation (Ill-posed)



 $y = \Phi \rho = \Phi \Psi \alpha$ 

 $\rho: object (N \times 1)$   $\alpha: K - sparse \ data (N \times 1)$   $\Psi: Sparse \ Transform(N \times N)$   $\Phi: Encoding \ function(M \times N)$   $y: acquired \ data (M \times 1)$  $K < M \le N$ 



# **Compressive Sampling**

• Sparse Representation

• Incoherent sampling & representation space

• Restricted Isometry Property

# Sparsity

- Sparse : only a few non-zero elements.
- Lp-norm 0≤ p<2 can be used to represent the sparsity of a dataset.</li>
   L0 and L1 are commonly used for discussion.

$$\left\|\vec{a}\right\|_{p} = \sqrt[p]{\sum_{i}} \left|a_{i}\right|^{p}$$

- Ex: a=[5, 0, 0, -1, 0],  $||a||_0=2$ ,  $||a||_1=6$ , precisely sparse b=[5, -4, 2, 3, 0],  $||b||_0=4$ ,  $||b||_1=14$ , not sparse c=[-5, 0.001,-0.005, 1, 0],

 $\|\mathbf{c}\|_0 = 4$ ,  $\|\mathbf{c}\|_1 = 6.006$ , nearly sparse (with noise and ...)

- In Compressed Sensing
  - L1 norm is suitable for the nearly sparse data.
  - L1 is equivalent to L0 in reconstruction. [Donoho, Tanner]

# Data Compression & Sparsity

- Sparse Data can be compressed
- Sparse Transformation
  - Fourier Transform
  - Wavelet (JPEG2000)
  - Discrete Cosine
     Transform (JPEG)
  - ...etc

• Sparse Data





# **Compressive Sampling**

• Sparse Representation

• Incoherent sampling & representation space

• Restricted Isometry Property

### Incoherence

 Different behavior of the coefficients between the sensing basis (for k-space) and the representation bases (for ρ space)



### Incoherence

#### **Time V.S. Frequency**



### Incoherence

V.S

#### • k-space



#### Wavelet space



# **Compressive Sampling**

• Sparse Representation

• Incoherent sampling & representation space

• Restricted Isometry Property

- The encoding matrix of Compressive Sampling must satisfy Uniform Uncertainty Principle.
- Uniform Uncertainty Principle (UUP)
   aka Restricted Isometry Property

$$1 - \varepsilon \leq \frac{\left\| \Phi \Psi \alpha \right\|_{2}}{\left\| \Psi \alpha \right\|_{2}} = \frac{\left\| \Phi \rho \right\|_{2}}{\left\| \rho \right\|_{2}} \leq 1 + \varepsilon \qquad \qquad \varepsilon \geq 0$$
  
$$\alpha : K - sparse \ data$$

$$1 - \varepsilon \leq \frac{\left\| \Phi \Psi \alpha \right\|_{2}}{\left\| \Psi \alpha \right\|_{2}} = \frac{\left\| \Phi \rho \right\|_{2}}{\left\| \rho \right\|_{2}} \leq 1 + \varepsilon$$

• K-sparse data are mostly distinguishable in  $\Phi$ 

$$\rho_1 \neq \rho_2; \quad \Phi \rho_1 \neq \Phi \rho_2$$

• And the undersampled data in representation space may look similar to the original data

$$\Phi^{-1}\Phi\rho \approx \rho$$

 $\rho_1 \neq \rho_2$ 







 $\Phi_s \rho_1 = \Phi_s \rho_2$ 





# NO Restricted Isometry Property $\Phi_s^{-1}\Phi_s\rho_1 = \Phi_s^{-1}\Phi_s\rho_2$

ky





# $\Phi_r \rho_1 \neq \Phi_r \rho_2$



# $\Phi_r^{-1}\Phi_r\rho_1 \neq \Phi_r^{-1}\Phi_r\rho_2$

ky





 $\Phi_r^{-1}\Phi_r\rho_1\neq\Phi_r^{-1}\Phi_r\rho_2$ 

ky





# Toward Compressed Sensing



# Toward Compressed Sensing











# **Compressed Sensing**

Regularly Undersampling

 Regularly distributed aliasing artifact
 Difficult to distinguish signal and artifacts

- Irregularly Undersampling
  - Irregular distributed artifacts (Noise Like)
  - Noise suppression algorithm may help
  - How about finding a sparsest solution

# **Compressed Sensing**

• Sparse Representation

• Compressive Sampling

• Signal Recovery

# Finding a Solution

Image Encoding

 $\mathbf{k} = \Phi \Psi \alpha = \mathbf{E} \alpha$ 

k : Data
Φ : Encoding
Ψ: Sparsification
α: Sparse Signal

• Image Decoding $\boldsymbol{\alpha}' = (E^T E)^{-1} E^T \mathbf{k}$ 

or

$$\boldsymbol{\alpha} = \min_{\boldsymbol{\alpha}'} |\mathbf{k} - \mathbf{E}\boldsymbol{\alpha}'|_2^2$$

## Finding a CS Solution

• Encoding

 $\mathbf{k} = \Phi \Psi \alpha = \mathbf{E} \alpha$ 

k : Data
Φ : Encoding
Ψ: Sparsification
α: Sparse Signal

• Decoding Find a solution  $\alpha'$  such that  $\Psi \alpha'$  is the sparsest &  $k - E \alpha' = 0$ 

• A sparse signal:

$$x = \begin{bmatrix} 0\\2\\0 \end{bmatrix} \quad ;$$

represented in the bases [1,0,0], [0, 1, 0] and [0,0, 1]

• The signal was encoded by a new random bases

|          | 0.2  | 0.49 | 0.46 |                | 0.98                   |
|----------|------|------|------|----------------|------------------------|
| $\Phi =$ | 0    | 0    | 0    | $y = \Phi x =$ | 0                      |
|          | 0.61 | 0.77 | 0.83 |                | <u>[</u> 1 <b>.</b> 54 |

 Now forget the x. Let's get the x back from the encoded signal y and the encoding matrix Φ.

$$\Phi = \begin{bmatrix} 0.2 & 0.49 & 0.46 \\ 0 & 0 & 0 \\ 0.61 & 0.77 & 0.83 \end{bmatrix}$$

 $y = \Phi x =$ 

- What we know about x
  - -3 elements  $[x_1, x_2, x_3]$
  - -a solution of the  $y = \Phi x$
  - And it's sparse

$$\begin{bmatrix} 0.98\\0\\1.54\end{bmatrix} = \begin{bmatrix} 0.2 & 0.49 & 0.46\\0 & 0\\0.61 & 0.77 & 0.83\end{bmatrix} \begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}$$

• Parametric form of the general solutions of x

 $x' = \Phi^{-1}y + t \operatorname{ker}(\Phi)$ =  $\begin{bmatrix} -0.3262 \\ 1.2879 \\ 0.9004 \end{bmatrix} - t \begin{bmatrix} -0.2734 \\ -0.5967 \\ 0.7545 \end{bmatrix}$ 

#### The answer shall be the sparsest

• If  $x_1 = 0$ , x = [0, 2, 0]

• If  $x_2 = 0$ , x = [0.91, 0, 2.5289]

$$c' = \Phi^{-1} y + t \operatorname{ker}(\Phi)$$
  
=  $\begin{bmatrix} -0.3262 \\ 1.2879 \\ 0.9004 \end{bmatrix} - t \begin{bmatrix} -0.2734 \\ -0.5967 \\ 0.7545 \end{bmatrix}$ 

# Searching in solution space

• Exactly recover the precisely sparse data

• The only method compatible to find the solution subject to min L0-norm

• Time consuming

• Not suitable for slightly larger scale system

## Finding a Sparsest Solution

• Image Encoding  $\mathbf{k} = \Phi \rho = \Phi \Psi \alpha = \mathbf{E} \alpha$ 

• L0 or L1-norm Regularized Image Decoding

minimize  $|\alpha'|_p$  subject to  $|\mathbf{k} - \mathbf{E}\alpha'|_2 < \epsilon$ or

$$\rho' = \min_{\rho'} |\mathbf{k} - \mathbf{E}\boldsymbol{\alpha}'|_2^2 + \lambda |\boldsymbol{\alpha}'|_p^p$$
### Finding a Sparsest Solution

• Image Encoding  $\mathbf{k} = \Phi \rho = \Phi \Psi \alpha = \mathbf{E} \alpha$ 

• *L0 or L1*-norm Regularized Image Decoding

minimize 
$$|\Psi^{-1}\rho'|_p$$
 subject to  $|\mathbf{k} - \Phi\rho'|_2 < \epsilon$   
or  
 $\rho' = \min_{\alpha'} |\mathbf{k} - \Phi\rho'|_2^2 + \lambda |\Phi^{-1}\rho'|^p$ 

2

۱Ŋ

# Algorithms to explore CS solution

- Sparsest searching (impractical)
- non-linear Conjugate Gradient

   CG: Newton's Method in matrix form
   line search
- Basis pursuit (A greedy method)
  Orthogonal Matching Pursuit
- LASSO: least absolute shrinkage and selection operator
- ..... (FOCUSS)

#### non-linear Conjugate Gradient

 $\underset{m}{\operatorname{argmin}} \quad \|\mathcal{F}_{u}m - y\|_{2}^{2} + \lambda \|\Psi m\|_{1},$  $\nabla f(m) = 2F_{u}^{*}(F_{u}m - y) + \lambda \nabla ||\Psi m||_{1}$ 



% Initialization  $k = 0; m = 0; g_0 = \nabla f(m_0); \Delta m_0 = -g_0$ % Iterations while ( $||g_k||_2 < \text{TolGrad and } k > \text{maxIter}$ ) { % Backtracking line-search  $t = 1; while (f(m_k + t\Delta m_k) > f(m_k) + \alpha t \cdot \text{Real}(g_k^*\Delta m_k))$   $\{t = \beta t\}$   $m_{k+1} = m_k + t\Delta m_k$   $g_{k+1} = \nabla f(m_{k+1})$   $\gamma = \frac{||g_{k+1}||_2^2}{||g_k||_2^2}$   $\Delta m_{k+1} = -g_{k+1} + \gamma \Delta m_k$ k = k + 1 }

#### SPARSE MRI



Michael Lustig et al. Magn Reson Med, 58: 1182–1195 (2007)





Michael Lustig et al. Magn Reson Med, 58: 1182–1195 (2007)

### SPARSE MRI

• The sparser, the better

 Contrast Enhanced MRA has better reconstruction than conventional T1w and T2w images.

• Higher dimension has more degrees of freedom for sparse representation

- Better reconstruction in 3D MRI than in 2D

# Algorithms to explore CS solution

- Sparsest searching (impractical)
- non-linear Conjugate Gradient

   CG: Newton's Method in matrix form
   line search
- Basis pursuit (A greedy method)
  Orthogonal Matching Pursuit
- LASSO: least absolute shrinkage and selection operator
- ..... (FOCUSS)

- Orthogonal Matching Pursuit
- Keep picking up the maximal signal in the sparse representation of each iteration
- Remove the component from the undersampled data



80

• Original fully-sampled acquisition

• Least square reconstruction





 Randomly undersampled acquisition



# • Least square reconstruction





# CS on Cardiac CINE imaging

#### • Original FULLY sampled cardiac CINE



#### The Spectrum of Cardiac Motion





#### Cardiac CINE Image

y-f spectrum

#### Reconstruction



#### 2nd Round: OMP + Weighting

#### w/ and w/o penalty (3x)



**Fully Sampled** 

Without Penalty

W/ Penalty from 1st recon

### Fully Sampled V.S CS Sampled Spectrum of Cardiac Motion

Fully Sampled Reference







#### Reconstruction



## w/ and w/o penalty (3x)



### w/ and w/o penalty (3x)



#### FMRI



### Other CS applications: MRSI

#### • Mapping Metabolites in Human Brain



#### **Regional Spectra**

#### Compressed sensing for resolution enhancement of hyperpolarized <sup>13</sup>C flyback 3D-MRSI

Simon Hu<sup>a,b</sup>, Michael Lustig<sup>c</sup>, Albert P. Chen<sup>a</sup>, Jason Crane<sup>a</sup>, Adam Kerr<sup>c</sup>, Douglas A.C. Kelley<sup>d</sup>, Ralph Hurd<sup>d</sup>, John Kurhanewicz<sup>a,b</sup>, Sarah J. Nelson<sup>a,b</sup>, John M. Pauly<sup>c</sup>, Daniel B. Vigneron<sup>a,b,\*</sup>



Non-

## Other CS applications: HARDI & Fiber tracts



• Typical Water Diffusion Barrier

## Other CS applications: HARDI

• HARDI encodes ADC on several direction to resolve complex microstructure

**Diffusion Encoding Directions** 









### Resolving the Orientation: CFARI



$$\widehat{O}(y,d) = S_0 \sum_{i} f_i e^{-(b \cdot \vec{d}^T D_i \vec{d})}$$



$$f = \min_{f:f_i \in [0,\infty)} \left\| \sum_{i} f_i e^{-(b \cdot \vec{d}^T D_i \vec{d})} - \hat{O}(y,d) / S_0 \right\|_2^2 + \beta \|f\|_1$$

D: Modelled prolate diffusion tensor f<sub>i</sub>: Components of each modeled profile

## Result : Color FA map

#### Accelerated Multi-shot DWI



#### 100 Directions

#### 64Directions

# Orientation Map

#### Accelerated Multi-shot DWI



100 Directions

64Directions

#### Something About CS

A very powerful tool
 Not only useful in MRI but other Multimedia

Sparsity is the key toward faster MR scan
 – Fast super resolution imaging

• Reconstruction may take much time.

#### 高等磁共振影像技術

# 動態加速影像與壓縮感知 Accelerated MRI & Compressed Sensing

Tzu-Cheng Chao, Ph.D.

Dept. of Computer Science and Information Engineering Institute of Medical Informatics National Cheng-Kung University