Physiological Signals in
Respiratory System呼吸系統的生理訊號

莊子肇 副教授 中山電機系

Respiratory system

- A system used for gas exchange
 - Trachea, bronchus, lung
- Evaluation of its function
 - Ventilation: the movement of air into the lungs
 - Distribution: the distribution of inhaled gas in lungs
 - Diffusion: the exchange of O₂ and CO₂ at cellular levels

Volumes related to ventilation

Volumes related to ventilation

- Tidal volume
 - the volume of air moved in and out of the lung under normal respiration (~ 500 ml)
- Respiratory rate
 - number of breaths per minute
- Minute volume (minute ventilation)
 - the total amount of air exchanged per minute
 - Minute volume = $V_T x$ respiratory rate

Measurement of respiratory volumes

Spirometer

- Measure the volume of air inhaled and exhaled through mouthpiece (with the airflow of noise being blocked)
- Incapable of measuring residual volumes

Pulmonary function test

Water-sealed spirometer

Flow-volume curve by spirometry

 Ask the patient to take an abrupt maximum effort inhale, followed by a maximum effort exhale

Nitrogen washout procedure

- Measure the absolute volume of lungs, such as TLC or FRC
- Ask the patient to breathe pure O₂
- Measure the expired volume and the N₂
 concentration to estimate the lung volume
 FRC and TLC

Nitrogen washout procedure

Whole-body plethysmography

- Body box for plethysmograph
- Measure FRC or TLC by using Boyle's law

•
$$P \cdot V = (P - \Delta P)(V + \Delta V)$$

•
$$FRC = V_{box} \cdot \left| \frac{\Delta P_{box}}{\Delta P_{mouth}} \right|$$

 P_{mouth} : mouth pressure P_{box} : box pressure V_{hox} : the free box volume outside the body

Photo credit: Wikipedia (Plethysmograph) 10

Ref: C.P. Criée (2015). "Body plethysmography – Its principles and clinical use". Respiratory Medicine. 105 (7): 959–971.

Plethysmography

Photo credit: Wikipedia (Plethysmograph)

Distribution of blood gas

- Related to the function of respiratory and circulatory system
- Normal range in blood
 - Arterial pO₂: 80-104 mmHg
 - Arterial oxygen saturation (SaO₂): 95-100 %
 - Venous pCO₂: 33-48 mmHg
 - pH: 7.31~7.45

Oxygen in blood

- Oxygen is picked up into capillaries at alveoli.
 - 98% combined with hemoglobin (as HbO₂)
 - SO₂: the fraction of oxygenated hemoglobin (HbO₂) to total hemoglobin
- pO₂ is generally proportional to SO₂
 - Also effected by pH value and temperature

HbO₂ dissociation curve

CO₂ in blood

- CO₂ is released from the pulmonary capillaries
- CO₂ is >20 times soluble than O₂ in blood
 - $CO_2 + H_2O \leftrightarrow H_2CO_3 \leftrightarrow H^+ + HCO_3^-$
 - pCO₂ can be estimated by pH value
- Hypercapnia: abnormally elevated CO₂ level in blood

Measurement of arterial blood gas

- The conventional method requires arterial blood samples
 - Highly invasive
 - Not available for real-time applications
 - Accurate

 Measuring all parameters of interest, such as pO₂, pCO₂, pH, and concentration of electrolytes

Clark-type pO₂ sensor

Reduction-oxidation reaction Cathode: reduction $O_2 + 2H_2O + 4e^- \leftrightarrow 4OH^-$ Anode: oxidation $Ag \leftrightarrow Ag^+ + e^ Ag^+ + Cl^- \leftrightarrow AgCl\downarrow$

The current increases as pO₂ goes higher.

Transcutaneous pO₂ sensor

- Attached on the skin, instead of being immersed in blood or tissue fluid.
 - Measure oxygen diffusing from blood through the skin.
 - Non-invasive, but less accurate.

pCO₂ and pH value

- pCO₂ (in the range of 10-90 mmHg) is linearly related to pH value
 - Normal range of pCO₂: 33-48 mmHg
 - $CO_2 + H_2O \leftrightarrow H_2CO_3 \leftrightarrow H^+ + HCO_3^-$
 - pH = −log₁₀[H⁺]
 - Calibration according to temperature

Optic-based methods for blood test

- EM waves attenuate quickly in human tissues.
 - The near infrared (λ: 650-1350 nm) shows maximum penetration depth
 - Scattering and absorption
- The attenuation of HbO₂ and Hb are functions of wavelength, respectively.

Attenuation of HbO₂ and Hb

Extinction coefficient: the attenuation coefficient due to absorption and scattering

Oxygen saturation

- The fraction of HbO₂ can be calculated with at least two different wavelengths.
 - Oxygen saturation (SO₂)
 - Ex: red light (660 nm) and infrared (805 nm)
- Invasive and real-time

Intravascular fiber-optic catheter

Pulse oximetry

- Non-invasive measurement of SO₂
 - Measure on the surface of skin
 - SpO₂: peripheral oxygen saturation
- Transmissive and reflective pulse oximeters

Ref: Idoia Badiola (2022). "Accuracy enhancement in reflective pulse oximetry by considering wavelength-dependent pathlengths". Physiol. Meas. 43 095001

Pulse oximetry

- Red/infrared light is not only attenuated by blood
 - Changing part: the pulsatile flow of arterial blood
 - Unchanging parts: skin, muscle, fat, venous blood, bone,...
 - Measuring SpO₂ of arterial blood
- Avoid the interference of ambient illuminance

Photoplethysmography (PPG)

- The optical method to measure volumetric change of blood in peripheral circulation.
 - Cardiac pulsation
 - Heart rate can be obtained by the cardiac cycle
- It works with only one wavelength
 - Commonly used in wearable devices

生醫工程導論:呼吸系統的生理訊號

Reference chapters:

<u>Chapter 9</u>: Measurement of the respiratory system, "Medical Instrumentation: Application and Design", John G. Webster.

CREDITS: This presentation template was created by <u>Slidesgo</u>, and includes icons by <u>Flaticon</u>, and infographics & images by <u>Freepik</u>

